Image from OpenLibrary

Simulación por dinámica molecular de defectos en la superficie Si(001): comparación con experimentos STM.

By: Contributor(s): Material type: Computer fileComputer filePublication details: 2003.Description: 118 pDissertation note: Tesis para optar al título de Magister en Ciencia y Tecnología de Materiales. Director: Weissmann, Mariana Summary: Las superficies e interfaces de materiales semiconductores juegan un papel muy importante en la tecnología microelectrónica. En particular, la superficie de silicio (001) motiva por sus aplicaciones un gran interés. La producción de cristales de Si de alta calidad es un desafío tecnológico que involucra procesos de crecimiento homoepitaxial en las superficies de Si. Los defectos en la superficie, vacancias y escalones, influyen de manera crítica en el crecimiento a bajas temperaturas, en consecuencia resulta importante estudiar como afectan la formación de estructuras epitaxiales. La distribución de la densidad electrónica sobre la superficie resuelta en energía refleja ciertas características de la superficie. Los experimentos de microscopía (STM) y espectroscopia (STS) de transmisión túnel son capaces de resolver espacialmente y energéticamente los estados electrónicos de la superficie, sensando localmente la interacción con una punta, dando información directa de la estructura electrónica local. Las imágenes que se obtienen para la superficie Si(001) reflejan detalles "no topográficos" de la superficie, haciendo más difícil la interpretación en términos de su relación con la estructura geométrica que en los metales. En este trabajo estudiamos las propiedades electrónicas y estructurales de la superficie Si(001) y empleamos la teoría clásica de Bardeen para describir el fenómeno de transmisión túnel de electrones. La relajación y difusión de defectos en la superficie se estudió mediante simulación por dinámica molecular tight binding (TBMD). Calculamos la energía de formación de vacancias y escalones, y mostramos las imágenes generadas para modelar los resultados experimentales de STM
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Home library Call number Status Barcode
Thesis Thesis Centro de Información Eduardo Savino IT/T--83/03 (Browse shelf(Opens below)) Not for loan IT/T--83/03
Total holds: 0

Cantidad de ejemplares: 1

Tesis para optar al título de Magister en Ciencia y Tecnología de Materiales. Director: Weissmann, Mariana

Las superficies e interfaces de materiales semiconductores juegan un papel muy importante en la tecnología microelectrónica. En particular, la superficie de silicio (001) motiva por sus aplicaciones un gran interés. La producción de cristales de Si de alta calidad es un desafío tecnológico que involucra procesos de crecimiento homoepitaxial en las superficies de Si. Los defectos en la superficie, vacancias y escalones, influyen de manera crítica en el crecimiento a bajas temperaturas, en consecuencia resulta importante estudiar como afectan la formación de estructuras epitaxiales. La distribución de la densidad electrónica sobre la superficie resuelta en energía refleja ciertas características de la superficie. Los experimentos de microscopía (STM) y espectroscopia (STS) de transmisión túnel son capaces de resolver espacialmente y energéticamente los estados electrónicos de la superficie, sensando localmente la interacción con una punta, dando información directa de la estructura electrónica local. Las imágenes que se obtienen para la superficie Si(001) reflejan detalles "no topográficos" de la superficie, haciendo más difícil la interpretación en términos de su relación con la estructura geométrica que en los metales. En este trabajo estudiamos las propiedades electrónicas y estructurales de la superficie Si(001) y empleamos la teoría clásica de Bardeen para describir el fenómeno de transmisión túnel de electrones. La relajación y difusión de defectos en la superficie se estudió mediante simulación por dinámica molecular tight binding (TBMD). Calculamos la energía de formación de vacancias y escalones, y mostramos las imágenes generadas para modelar los resultados experimentales de STM

Lugar de trabajo: Centro Atómico Constituyentes

There are no comments on this title.

to post a comment.