000 01159cam a22002294a 4500
999 _c32823
_d32823
001 12750534
003 AR-SmCIES
005 20240717130242.0
008 020423s2003 nyua b 001 0 eng
020 _a0387954953
020 _a0387954481
040 _cAR-SmCIES
100 1 _aLee, John M.,
_d1950-
_93166
245 1 0 _aIntroduction to smooth manifolds
260 _aNew York:
_bSpringer,
_c2003.
300 _axvii, 628 p. :
_bil. ;
440 _aGraduate texts in mathematics
_vno. 218
_98263
505 _tTabla de contenido: Smooth Manifolds Smooth Maps Tangent Vectors Vector Fields Vector Bundles The Cotangent Bundle Submersions, Immersions, and Embeddings Submanifolds Lie Groups Actions Embedding and Approximation Theorems Tensors Differential Forms Orientations Integration on Manifolds De Rham Cohomology The de Rham Theorem Integral Curves and Flows Lie Derivatives Integral Manifolds and Foliations Lie Groups and Their Lie Algebras Appendix: Review of Prerequisites - References - Index
650 0 _aManifolds (Mathematics)
_93167
830 _aGraduate texts in mathematics no. 218
_98264
942 _2udc
_cIS