000 | 05878cam a2200349 a 4500 | ||
---|---|---|---|
999 |
_c26475 _d26475 |
||
001 | 15013773 | ||
003 | AR-SmCIES | ||
005 | 20180423112438.0 | ||
008 | 070919s2008 nyua fr 001 0 eng d | ||
020 |
_a9781591690351 _q(hc) |
||
020 | _a1591690358 | ||
040 |
_aDLC _cDLC _dUKM _dBAKER _dBTCTA _dC#P _dYDXCP _dDEBBG _dUWW _dDLC _dAR-SmCIES |
||
041 | _aeng | ||
044 | _anyu | ||
072 | 7 |
_2inisscc _aS37 |
|
080 | _a66.095.3 | ||
082 | 0 | 0 |
_a621.402/2 _222 |
100 | 1 |
_aCarey, V. P. _q(Van P.) _991 |
|
245 | 1 | 0 |
_aLiquid-vapor phase-change phenomena : _ban introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment / _cVan P. Carey. |
250 | _a2nd ed. | ||
260 |
_aNew York : _bTaylor and Francis, _c2008. |
||
300 |
_axxii, 742 p. : _bil. ; _c24 cm. |
||
504 | _aIncluye bibliografía y problemas al final de cada capítulo e índice analítico al final de la obra. | ||
505 | 0 | _aPt. 1. Thermodynamic and mechanical aspects of interfacial phenomena and phase transitions -- 1. Liquid-vapor interfacial region - A nanoscale perspective -- 1.1. Molecular perspective on liquid-vapor transitions -- 1.2. Interfacial region - Molecular theories of capillarity -- 1.3. Nanoscale features of the interfacial region -- 1.4. Molecular dynamics simulation studies of interfacial region thermophysics -- 2. Liquid-vapor interface - a macroscopic treatment -- 2.1. Thermodynamic analysis of interfacial tension effects -- 2.2. Determination of interface shapes at equilibrium -- 2.3. Temperature and surfactant effects on interfacial tension -- 2.4. Surface tension in mixtures -- 2.5. Near critical point behavior -- 2.6. Effects of interfacial tension gradients -- 3. Wetting phenomena and contact angles -- 3.1. Equilibrium contact angles on smooth surfaces -- 3.2. Wettability, cohesion, and adhesion -- 3.3. Effect of liquid surface tension on contact angle -- 3.4. Adsorption -- 3.5. Spread thin films -- 3.6. Contact angle hysteresis -- 3.7. Other metrics for wettability -- 3.8. Nanoscale view of wettability -- 4. Transport effects and dynamic behavior at interfaces -- 4.1. Transport boundary conditions -- 4.2. Kelvin-Helmholtz and Rayleigh-Taylor instabilities -- 4.3. Interface stability of liquid jets -- 4.4. Waves on liquid films -- 4.5. Interfacial resistance in vaporization and condensation processes -- 4.6. Maximum flux limitations -- 5. Phase stability and homogeneous nucleation -- 5.1. Metastable states and phase stability -- 5.2. Thermodynamic Aspects of Homogeneous Nucleation in Superheated Liquid -- 5.3. Kinetic Limit of Superheat -- 5.4. Comparison of Theoretical and Measured Superheat Limits -- 5.5. Thermodynamic aspects of homogeneous nucleation in supercooled vapor -- 5.6. Kinetic limit of supersaturation -- 5.7. Wall interaction effects on homogeneous nucleation -- Pt. 2. Boiling and condensation near immersed bodies -- 6. Heterogeneous nucleation and bubble growth in liquids -- 6.1. Heterogeneous nucleation at a smooth interface -- 6.2. Nucleation from entrapped gas or vapor in cavities -- 6.3. Criteria for the onset of nucleate boiling -- 6.4. Bubble growth in an extensive liquid pool -- 6.5. Bubble growth near heated surfaces -- 6.6. Bubble departure diameter and the frequency of bubble release -- 7. Pool boiling -- 7.1. Regimes of pool boiling -- 7.2. Models of transport during nucleate boiling -- 7.3. Correlation of nucleate boiling heat transfer data -- 7.4. Maximum heat flux conditions -- 7.5. Minimum heat flux conditions -- 7.6. Film boiling -- 7.7. Transition boiling -- 8. Other aspects of boiling and evaporation in an extensive ambient -- 8.1. Additional parametric effects on pool boiling -- 8.2. Leidenfrost phenomenon -- 8.3. Fluid-wall interactions and disjoining pressure effects -- 8.4. Enhancement of pool boiling heat transfer -- 8.5. Pool boiling of binary mixtures -- 9. External condensation -- 9.1. Heterogeneous nucleation in vapors -- 9.2. Dropwise condensation -- 9.3. Film condensation on a flat, vertical surface -- 9.4. Film condensation on cylinders and axisymmetric bodies -- 9.5. Effects of vapor motion and interfacial waves -- 9.6. Condensation in the presence of a noncondensable gas -- 9.7. Enhancement of condensation heat transfer -- Pt. 3. Internal flow convective boiling and condensation -- 10. Introduction to two-phase flow -- 10.1. Two-phase flow regimes -- 10.2. Basic models and governing equations for one-dimensional two-phase flow -- 10.3. Determination of the two-phase multiplier and void fraction -- 10.4. Analytical models of annular flow -- 10.5. Effects of flow passage size and geometry -- 11. Internal convective condensation -- 11.1. Regimes of convective condensationin conventional (macro) tubes -- 11.2. Analytical modeling of downflow internal convective condensation -- 11.3. Correlation methods for convective condensation heat transfer -- 11.4. Convective condensation in microchannels and channels with noncircular cross sections -- 11.5. Internal convective condensation of binary mixtures -- 12. Convective boiling in tubes and channels -- 12.1. Regimes of convective boiling in conventional (macro) tubes -- 12.2. Onset of boiling in internal flows -- 12.3. Subcooled flow boiling -- 12.4. Saturated flow boiling -- 12.5. Critical heat flux conditions for internal flow boiling -- 12.6. Post-CHF internal flow boiling -- 12.7. Internal flow boiling in microchannels and complex enhanced flow passages -- 12.8. Internal flow boiling of binary mixtures -- App. I. Basic elements of the kinetic theory of gases -- App. II. Saturation properties of selected fluids -- App. III. Analysis details for the molecular theory of capillarity. | |
650 | 7 |
_aCAMBIADORES DE CALOR _992 _2INIS |
|
650 | 7 |
_aCONDENSACION DE VAPOR _2INIS _996 |
|
650 | 7 |
_aEBULLICION DE MASA _2INIS _997 |
|
650 | 7 |
_aEVAPORACION _2INIS _998 |
|
650 | 7 |
_aTRANSFORMACIONES DE FASE _2INIS _999 |
|
942 |
_2udc _cBK |